Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport.
نویسندگان
چکیده
Phosphatidylinositol 3-kinase (PI3K) activation is necessary for insulin-responsive glucose transporter (GLUT4) translocation and glucose transport. Insulin and platelet-derived growth factor (PDGF) stimulate PI3K activity in 3T3-L1 adipocytes, but only insulin is capable of stimulating GLUT4 translocation and glucose transport. We found that PDGF causes serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) in 3T3-L1 cells, measured by altered mobility on SDS-polyacrylamide gel, and this leads to a decrease in insulin-stimulated tyrosine phosphorylation of IRS-1. The PI3K inhibitors wortmannin and LY294002 inhibit the PDGF-induced phosphorylation of IRS-1, whereas the MEK inhibitor PD98059 was without a major effect. PDGF pretreatment for 60-90 min led to a marked 80-90% reduction in insulin stimulatable phosphotyrosine and IRS-1-associated PI3K activity. We examined the functional consequences of this decrease in IRS-1-associated PI3K activity. Interestingly, insulin stimulation of GLUT4 translocation and glucose transport was unaffected by 60-90 min of PDGF preincubation. Furthermore, insulin activation of Akt and p70(s6kinase), kinases downstream of PI3K, was unaffected by PDGF pretreatment. Wortmannin was capable of blocking these insulin actions following PDGF pretreatment, suggesting that PI3K was still necessary for these effects. In conclusion, 1) PDGF causes serine/threonine phosphorylation of IRS-1, and PI3K, or a kinase downstream of PI3K, mediates this phosphorylation. 2) This PDGF-induced phosphorylation of IRS-1 leads to a significant decrease in insulin-stimulated PI3K activity. 3) PDGF has no effect on insulin stimulation of Akt, p70(s6kinase), GLUT4 translocation, or glucose transport. 4) This suggests the existence of an IRS-1-independent pathway leading to the activation of PI3K, Akt, and p70(s6kinase); GLUT4 translocation; and glucose transport.
منابع مشابه
AENDO January 41/1
Heart, Emma, Woo S. Choi, and Chin K. Sung. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 278: E103–E112, 2000.—To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a doseand time-dependent manner (maximal effects at 50 mM glucosam...
متن کاملGlucosamine-induced insulin resistance in 3T3-L1 adipocytes.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosp...
متن کاملGrowth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3T3-L1 adipocytes.
Growth hormone (GH) is well known to induce in vivo insulin resistance. However, the molecular mechanism of GH-induced cellular insulin resistance is largely unknown. In this study, we demonstrated that chronic GH treatment of differentiated 3T3-L1 adipocytes reduces insulin-stimulated 2-deoxyglucose (DOG) uptake and activation of Akt (also known as protein kinase B), both of which are downstre...
متن کاملInsulin activates glycogen synthase by a novel PI 3-kinase/p70s6k dependent pathway in 3T3-L1 adipocytes.
Insulin causes the activation of a tyrosine kinase activity in the intracellular domain of its receptor, the major substrate of this kinase being the multifunctional docking protein E l . Phosphorylation of specific tyrosine residues on IRSl allows this protein to interact with and activate a number of downstream signalling molecules including phosphoinositide 3-kinase (PI 3-kinase), SHPTP2 and...
متن کاملDefective Akt activation is associated with glucose- but not glucosamine-induced insulin resistance.
UNLABELLED 3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high glucose or glucosamine, provided insulin (0.6 nM) is present during preincubation. Insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity is unaffected (30). Total cellular IRS-1, PI 3-kinase, or Akt concentrations were unchanged. Akt activation in subcellul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 39 شماره
صفحات -
تاریخ انتشار 1998